Abstract
The characteristics of integrability, bidirectional solitons and localized solutions are investigated for a ( $$3+1$$ )-dimensional breaking soliton (GBS) equation with general forms. Firstly, starting from the GBS equation, we perform the singularity manifold analysis and obtain a new integrable model in the sense of Painleve property. Secondly, taking advantage of the Bell polynomial approach, we construct the Backlund transformation, Lax pair and an infinite sequence of conservation laws. Subsequently, this new equation is also found to allow bidirectional soliton solutions, and the head-on and overtaking collisions between solitons are illustrated by some illustrative graphs. Finally, some localized excitations, such as lump solution, multi-dromions, periodic solitary waves solution, are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.