Abstract

Coffee residues (CRs) were gasified using a laboratory-scale fluidized bed gasifier with an air/steam mixture as the carrier gas. The gasification was conducted at an equivalence ratio (ER) of 0.3, and different operation temperatures (700, 800, and 900 °C) and steam-to-biomass (S/B) ratios (0, 0.75, and 1.5) were applied. Increasing temperature without steam boosted H2 and CO concentrations in producer gas, raising lower heating value (LHV) and cold gas efficiency (CGE) through endothermic reactions like Boudouard, tar cracking, and water-gas formation. At 900 °C, gas had LHV of 3.76 MJ/Nm3 and CGE of 22.47%. It was elevating temperature from 700 to 900 °C and S/B ratio to 1.5 raised H2 and CO concentrations from 2.04 to 8.60% and from 9.56 to 11.8%, respectively. This also increased LHV from 2.23 to 3.89 MJ/Nm3 and CGE from 11.28 to 25.08%. The steam gasification reaction was found to increase the H2 concentration and was thus considered effective in converting CRs to syngas and increasing energy production. Overall, the study successfully demonstrated the feasibility of steam gasification as a means of converting coffee residues to syngas and increasing energy production. The results also highlighted the importance of operating temperature and S/B ratio in improving the gasification process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.