Abstract

The present study evaluated the growth potential and differentiation of human fetal spinal cord (FSC) tissue in the injured adult rat spinal cord under different lesion and grafting conditions. Donor tissue at 6-9 weeks of gestational age was obtained through elective abortions and transplanted either immediately into acute resection (solid grafts) or into chronic contusion (suspension and solid grafts) lesions (i.e., 14-40 days after injury) in the thoracic spinal cord. The xenografts were then examined either histologically in plastic sections or immunocytochemically 1-3 months postgrafting. Intraspinal grafts in acute lesions demonstrated an 83% survival rate and developed as well-circumscribed nodules that were predominantly composed of immature astrocytes. Solid-piece grafts in chronic contusion lesions exhibited a 92% survival rate and also developed as nodular masses. These grafts, however, contained many immature neurons 2 months postgrafting. Suspension grafts in chronic contusion lesions had an 85% survival rate and expanded in a nonrestrictive, diffuse pattern. These transplants demonstrated large neuronally rich areas of neural parenchyma. Extensive neuritic outgrowth could also be seen extending from these grafts into the surrounding host spinal cord. These findings show that human FSC tissue reliably survives and differentiates in both acute and chronic lesions. However, both the lesion environment and the grafting techniques can greatly influence the pattern of differentiation and degree of host-graft integration achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call