Abstract

There are many factors such as process technologies, dose rates and biased conditions which can affect radiation damage in npn transistors. High- and low-dose-rate radiation response of domestic npn transistors with three kinds of emitter areas were investigated in this article. The influence of emitter area on radiation damage was analyzed. The results show that the degradation of current gain was more severe at low dose rate, i.e. enhanced low-dose-rate sensitivity. Furthermore, radiation damage was more apparent at low current injection. Through the comparison of radiation damage for different emitter areas, it was found that greater perimeter-to-area ratio (P/A) would cause greater normalized excess base current (IB/IB0). The damage mechanism for npn transistors is explained in detail, and the radiation hardness assurance is explored with respect to the emitter area and operating voltage of npn transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.