Abstract

Using conventional optical coherence tomography (OCT), it is difficult to image Henle fibers (HF) due to their low backscattering potential. However, fibrous structures exhibit form birefringence, which can be exploited to visualize the presence of HF by polarization-sensitive (PS) OCT. We found a slight asymmetry in the retardation pattern of HF in the fovea region that can be associated with the asymmetric decrease of cone density with eccentricity from the fovea. We introduce a new measure based on a PS-OCT assessment of optic axis orientation to estimate the presence of HF at various eccentricities from the fovea in a large cohort of 150 healthy subjects. By comparing a healthy age-matched sub-group (N = 87) to a cohort of 64 early-stage glaucoma patients, we found no significant difference in HF extension but a slightly decreased retardation at about 2° to 7.5° eccentricity from the fovea in the glaucoma patients. This potentially indicates that glaucoma affects this neuronal tissue at an early state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call