Abstract

Oxygen-free copper was processed by equal-channel angular pressing (ECAP) at room temperature for 1, 4 and 8 passes and then the ECAP specimens were further deformed by dynamic testing at 298 K using a strain rate of 10 s−1. Experiments were conducted to investigate the influence of the initial microstructures induced by ECAP on the subsequent grain refinement and mechanical properties after dynamic testing. The results show the strength of copper increased with increasing numbers of ECAP passes and a significant additional grain refinement was produced in the ECAP specimens through the dynamic testing. Thus, the initial grain sizes after ECAP for 1, 4 and 8 passes were ~16, ~4.4 and ~2.9 μm, respectively, and these values were reduced to ~400, ~330 and ~300 nm by dynamic testing, The grains were refined by conventional dislocation processes in the 1-pass specimen but there was evidence for dynamic recrystallization in the specimen processed by 8 passes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.