Abstract

Glass ionomer cements (GICs) are composed of an acid degradable glass, polyacrylic acid and water. Sol-gel processing to prepare the glass phase has certain advantages, such as the ability to employ lower synthesis temperatures than melt quenching and glasses that are reported to have higher purity. A previous study reported the effects of glass synthesis route on GIC fabrication. However, in that study, the sol-gel derived glass exhibited a reduced concentration of cations. This study investigates increasing the cation content of a sol-gel derived glass, 12CaO.4SrO.36ZnO.48SiO2 (molar ratio) by heating before aging to reduce dissolution of cations. This glass was prepared by both sol-gel and melt-quenched routes. GICs were subsequently prepared using both glasses. The resultant cement based on the sol-gel derived glass had a shorter working time than the cement based on the melt-quenched one. Contrary to this, setting time was considerably longer for the cement based on the sol-gel derived glass than for the cement based on the melt-quenched one. The cements based on the sol-gel derived glass were stronger in both compression and biaxial flexure than the cements prepared from the melt-quenched glass. The differences in setting and mechanical properties were associated with both cation content in the glass phase and the different surface area of the resultant cements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.