Abstract

【Gate length, height, and silicide thickness have all been shrinking linearly as device density has progressively increased over the years. We investigated the effect of the cobalt diffusion during the silicide formation process on the 60 $\AA$ -thick gate oxide lying underneath the Ti/Co and Co/Ti bilayers. We prepared four different cobalt silicides, which have similar sheet resistance, made from the film structure of Co/Ti(interlayer), and Ti(capping layer)/Co, and peformed the current-voltage, time-to-break down, and capacitance-voltage measurements. Our result revealed that the cobalt silicide process without the Ti capping layer allowed cobalt atoms to diffuse into the upper interface of gate oxides. We propose that 100 $\AA$ -thick titanium interlayer may lessen the diffusion of cobalt to gate oxides in 1500- $\AA$ height polysilicon gates.】

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.