Abstract
We have examined the chromosomal radiosensitivities of an ionizing-radiation-and MMS-sensitive mutant (M10), and a UV- and 4NQO-sensitive mutant (Q31), isolated from mouse lymphoma L5178Y cells, with regard to killing effects. In the first mitoses after 100 R gamma-irradiations, it was found that M10 cells were highly radiosensitive in terms of chromosomal aberrations accompanying longer mitotic delay (3 h); the frequencies of both chromatid-type and chromosome-type aberrations were, respectively, about 7 and 4 times higher than that of wild-type L5178Y cells. Furthermore, chromatid exchanges, particularly triradials, isochromatid breaks with sister union, and chromatid gaps and breaks were markedly enhanced at G1 phase of M10 cells. In contrast, the chromosomal radiosensitivity of Q31 cells after 100 R irradiation was similar to that of L5178Y cells. On the other hand, spontaneous aberration frequencies (overall breaks per cell) of M10 and Q31 cells were, respectively, 5.1 and 2.2 times higher than that of wild-type L5178Y cells. The chromosomal hypersensitivity to gamma-rays in M10 cells is discussed in the light of knowledge obtained from ataxia telangiectasia cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.