Abstract

Nanocrystalline soft magnetic alloy powders produced by heat treating amorphous powders are expected to improve properties and miniaturize dust cores because of their low coercive force Hc and high saturation magnetic flux density Bs. By water atomization process, we successfully obtained quenched Fe-Si-B-P-Cu alloy powders with spherical particle shape. The obtained powders have different average particle sizes of 2.0, 3.0, 5.0, and 8.5 μm. After annealing at 723 K, the as-quenched alloy powders are crystallized and Bs of the nanocrystalline alloy powders with Fe83.3Si4B8P4Cu0.7 and Fe84.8Si2B10P2Cu1.2 exhibit high Bs of 1.72 and 1.76 T, respectively. Core loss characteristics of the dust cores are found to be dependent on amorphous stability of the as-quenched powders. Thus, the Fe83.3Si4B8P4Cu0.7 nanocrystalline alloy powder with an average particle size of 3.0 μm exhibits the best core loss of 1461 kW/m3 (Bm = 50 mT, f=300 kHz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.