Abstract

The dry sliding wear of a medium carbon steel with different microstructures was measured under the normal load range of 50–150 N at 400°C by a pin-on-disc high-temperature wear setup. The wear behavior and wear mechanism were systematically studied; in particular, the characteristics of extrusive wear and the transition of wear mechanisms were investigated. Under low normal loads, the wear is oxidative type wear. Once the normal load reached a critical value, a mild-to-severe wear transition occurred, and subsequently an extrusive wear prevailed. The mild-to-severe wear transition depended on the microstructure of matrix; the critical normal load of the transition was 112.5 N for tempered sorbite, 125 N for lamellar pearlite, and 137.5 N for tempered martensite and tempered troostite. As oxidative wear prevailed, a thick oxide layer about 20–30 μ m and a plate-like wear debris with regular outline were recognized. However, as the extrusive wear occurred, the wear rate abruptly increased but the friction coefficient was reduced. The extrusive wear predominated due to thermal softening of the matrix and presented a superthin oxide layer (less than 0.5 μ m) and low oxide content on worn surfaces, accompanied by the appearance of ribbon-like wear debris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call