Abstract
The paper presents comprehensive statistical analyses of winds and water levels in Mobile Bay, Alabama, based on long-term meteorological and tidal observations at several locations. A procedure has been developed to select the most probable parent distribution function from a list of candidate distributions. The theoretical functions that fit the data best enable us to predict the extreme values of winds and water levels at different return periods. We have demonstrated the importance of dividing the winds into hurricane and nonhurricane seasons and separating astronomical tides from weather-driven water level changes. The statistical analysis suggests that the wind speed averaged over 8 min at Dauphin Island, Alabama, at the 100-year return period would be 48.9 m/s, which is equivalent to a sustained 1-min wind of 205 km/h, a very strong category 3 hurricane on the Saffir-Simpson scale. The probability distribution models predict that the 100-year maximum water level would be 3.23 m above the mean lower low water (MLLW) level at the bay entrance and 3.41 m above the MLLW level near the head of the bay, respectively. Extremely low water levels important to navigation are also found. Application of the predicted extreme winds and surges is illustrated through the development of a storm wave atlas in the estuary. It is expected that the methodology and results presented in this paper will benefit the management and preservation of the ecosystems and habitats in Mobile Bay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.