Abstract

This study aimed to investigate the drug resistance, molecular characteristics, and genetic relationship of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from food and human stool samples in northern Xinjiang. From 2015 to 2016, a total of 431 samples (meats and vegetables) were collected from retail markets and supermarkets located in the regions of Urumqi, Shihezi, and Kuitun in Xinjiang, China, and 20 human stool samples from the Shihezi Hospital. The PCR method was used to detect E. coli, and the presence of ESBL-producing E. coli was confirmed using the K-B disk diffusion confirmatory method. The susceptibility to ESBL-producing E. coli was tested by the microdilution broth method, and the minimum inhibitory concentration was determined. PCR was used to detect the resistance and virulence genes of ESBL-producing E. coli, and phylogenetics, plasmid replicon typing, screening of three integrons, and multilocus sequence typing (MLST) were performed. The results showed that 127 E. coli strains (15 human stool and 112 food samples) were isolated. Out of the 127 E. coli strains, 38 strains (6 human stool and 32 food 34 samples) of ESBL-producing E. coli were identified through screening. These 38 strains showed resistance to cefotaxime (94.74%) and cefepime (94.74%), and were sensitive to meropenem (0.00%). The most detected resistance genes were blaTEM (47.37%), and the most detected virulence genes were fimH (97.73%), ompA (97.73%), hlyE (97.73%), and crl (97.37%). The isolates belonged to phylogroups B1 (42.11%), C (23.68%), and A (21.05%). Among the plasmid replicon subtypes, IncFIB was the main type (42.11%). The integrons detected were of the first type (47.37%) and the third type (26.32%). The 38 E. coli strains had 19 different sequence-type (ST) strains. These 38 strains of ESBL-producing E. coli were analyzed using MLST and STs are varied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.