Abstract

Preparation and collection of thermal bitumen, a pyrolytic intermediate, are key factors in elucidating the mechanism of oil shale pyrolysis. Electron paramagnetic resonance (EPR), gas chromatography, Fourier transform infrared spectrophotometry, nuclear magnetic resonance (NMR) spectrometry, distortionless enhancement by polarization transfer (DEPT), and X-ray photoelectron spectroscopy were employed to investigate the thermochemical transformation in oil shale pyrolysis. Results showed that thermal bitumen was continuously generated and decomposed during the pyrolysis process. The maximum yield of thermal bitumen at 380 °C was 11.17%. EPR analysis showed that the g factor of kerogen and the pyrolysates was slightly higher than 2 and increased as pyrolysis progressed because of the aromatization of saturates and decarboxylation. CO2 and CO were mainly generated at temperatures lower than 340 °C, and less was obtained in the subsequent pyrolysis process. In contrast, C2–C5 organic gases were mainly genera...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.