Abstract

The present study focus on evolution of compressible vortex ring generated at the open end of a shock tube through accurate measurement of velocity field using Particle Image Velocimetry (PIV). To investigate the unsteady characteristics of embedded shock-free, low Mach number vortex rings, two cases (shock Mach numbers, M=1.27 and M=1.37) are considered for PIV measurements. Time-dependent variations of circulation, core and ring diameters, and ring velocity are calculated from the measured velocity field. Pinching-off process is investigated in detail for both cases. Formation time and the time of complete detachment of the vortex ring from the trailing jet are identified from the velocity and vorticity field. The ring formation is complete at about t *(= t U b/ D)=1.75 and 1.65 for M=1.27 and 1.37, respectively, where t is time, U b is fluid velocity behind the shock at exit, and D is tube diameter. Complete detachment of the vortex ring from the trailing jet is observed at [Formula: see text] and 2.9 for M=1.27 and 1.37, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.