Abstract

The study on damaged layer is necessary for improving the machinability in micro-machining because the damaged layer affects the micro mold life and micro machine parts. This study examined the ultra-precision micro-machining characteristics, such as cutting speed, feed rate and cutting depth, of a micro-damaged layer produced by an ultra-high speed air turbine spindle. The micro cutting force, surface roughness and plastic deformation layer were investigated according to the machining conditions. The damaged layer was measured using optical microscope on samples prepared through metallographic techniques. The scale of the damaged layer depends on the cutting process parameters, particularly, the feed per tooth and axial depth of the cut. According to the experimental results, the depth of the damaged layer is increased by increasing the feed per tooth and cutting depth, also the damaged layer occurs less in down-milling compared with up-milling during the micro-machining operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.