Abstract

AbstractCu–Mo mineralization occurs in southern part of the Chatree Au–Ag deposit, central Thailand. Quartz veins of Cu–Mo mineralization are divided into five types: Types A, B, C, D and E. Quartz veins of Types A, B and C are hosted in altered granodiorite porphyry, and quartz veins of Types D and E occur in altered andesite lava. Mineral assemblages of Types A, B and C quartz veins are composed of qz–chl–ilt–mol–py–ccp, qz–chl–ilt–ccp–py and qz–chl–ilt–ccp–py–sp–po, respectively. Types D and E quartz veins consist of qz–chl–py–ccp–sp–po and qz–ep, respectively. Fluid inclusions of quartz veins are divided into liquid‐rich two‐phases fluid inclusion, vapor‐rich two‐phases fluid inclusion and multiphase solid‐bearing fluid inclusion. Coexistence of a halite‐bearing fluid inclusion having salinity of 37 equiv. wt.% NaCl and a vapor‐rich two‐phases fluid inclusion having salinity of 1 equiv. wt.% NaCl suggests that the Cu–Mo‐bearing quartz veins were formed at temperature of 450°C and pressure of 250 bars (depth of approximately 1.5 km from the paleosurface). Based on the formation temperature of 450°C of quartz veins and the δ18O values of quartz of the quartz veins, the δ18O value of fluid responsible for the Cu–Mo‐bearing quartz vein is estimated to be +9.9‰. The origin of fluid forming the Cu–Mo‐bearing quartz veins in the N prospect of the Chatree mining area would be magmatic water. Based on the characteristics of geology, age, mineral assemblage and the formation environment, Cu–Mo mineralization would be different from the epithermal Au–Ag mineralization of the Chatree mining area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call