Abstract

To investigate the characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Study participants were 108 Chinese children (216 eyes) aged 4 to 6 years with a spherical equivalent refraction between -9.00 and +9.00 diopters (D). Cycloplegic refraction was measured using an autorefractor, axial length using an IOL Master (Zeiss, Oberkochen, Germany), and corneal biomechanical metrics and corneal power using an ultra-high-speed camera (Corvis ST; Oculus, Wetzlar, Germany) and Pentacam (Oculus; Menlo Park, CA). Differences in corneal biometry and biomechanical characteristics among myopia, emmetropia, and hyperopia eyes were analyzed by SPSS 17.0. The spherical equivalent refraction was significantly positively correlated with the stiffness parameter at the first applanation (SP-A1, r = 0.22, P < 0.01) and corneal velocity at the second applanation (A2 velocity, r = 0.25, P < 0.001), whereas it was negatively correlated with the peak distance (r = -0.32, P < 0.001) and deformation amplitude ratio (DA ratio, r = -0.34, P < 0.001). In the hyperopia, emmetropia, and myopia groups, the SP-A1 successively decreased (108.70 ± 22.93 vs. 100.50 ± 18.98 vs. 97.97 ± 18.91, P < 0.01), whereas the peak distance progressively increased (4.39 ± 0.32 vs. 4.56 ± 0.30 vs. 4.63 ± 0.34 mm, P < 0.001). In the same order of groups, an increasing trend was found for the axial length (21.11 ± 0.76 vs. 22.39 ± 0.72 vs. 24.09 ± 1.37 mm, P < 0.001), central anterior chamber depth (CACD, 3.04 ± 0.41 vs. 3.21 ± 0.33 vs. 3.37 ± 0.40 mm, P < 0.001) and flat meridian keratometry (K1, 41.92 ± 1.59 vs. 42.73 ± 1.39 vs. 42.98 ± 1.60 D, P < 0.001). Central corneal thickness significantly decreased in the same order of groups (565.46 ± 33.22 vs. 551.97 ± 24.66 vs. 543.36 ± 37.74 µm, P < 0.001). Corneal stiffness is reduced in myopia and increased in hyperopia compared with emmetropia in children aged 4 to 6 years. Corneal biometry and biomechanical characteristics in preschool children seem to depend on refractive status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.