Abstract

The properties of voltage-dependent Ca2+ channels were studied in isolated portal vein myocytes using the whole cell voltage-clamp method. Ca2+ currents (ICa) were identified based on their activation and inactivation potential, their dependence on external Ca2+ ([Ca2+]o), their suppression by organic or inorganic Ca2+ channel blockers, their augmentation by BAY K 8644, and their insensitivity to tetrodotoxin or alterations in external Na+ ([Na+]o). Changing the holding potential from -90 to -40 mV decreased ICa from 4.6 +/- 0.6 to 2.0 +/- 0.3 pA/pF at 0 mV but did not shift its voltage dependence significantly. The voltage dependence of steady-state inactivation and activation was represented by Boltzmann distributions with the following parameters: inactivation, half-maximal voltage (V0.5) = -32 +/- 7 mV and slope factor (k) = 6.1 +/- 0.2 mV; activation, V0.5 = -15 +/- 4 mV and k = 5.6 +/- 0.6 mV. Doubling the [Ca2+]o increased ICa and shifted the voltage dependence of its activation and inactivation by approximately 10 mV toward more positive potentials without altering the window currents. Substituting Na+, Ba2+, or Sr2+ for Ca2+ as the charge carrier through the Ca2+ channel slowed the rate of its inactivation and shifted its voltage dependence toward more negative potentials. Divalent selectivity of the Ca2+ channel showed an apparent concentration dependence: at 2 mMISr less than IBa = ICa, while at 10 mM ICa less than ISr = IBa. Because 50-100 microM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abolished the apparent concentration dependence of the divalent ion selectivity, this phenomenon was attributed to a high Ca2+ selectivity of the channel. Our data support the presence of only one type of Ca2+ channel in rabbit portal vein myocytes with characteristics similar to the L-type Ca2+ channel described in other cells, but with somewhat different divalent selectivity, holding potential, and [Na+]o dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.