Abstract

We discuss several possible experimental signatures of the Bose-Einstein condensation (BEC) transition for an ultracold Bose gas in an inhomogeneous optical lattice. Based on the commonly used time-of-flight imaging technique, we show that the momentum-space density profile in the first Brillouin zone, supplemented by the visibility of interference patterns, provides valuable information about the system. In particular, by crossing the BEC transition temperature, the appearance of a clear bimodal structure sets a qualitative and universal signature of this phase transition. Furthermore, the momentum distribution can also be applied to extract the condensate fraction, which may serve as a promising thermometer in such a system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.