Abstract

[1] Black carbon (BC) aerosol mass mixing ratio and microphysical properties were measured from the NOAA P-3 aircraft during active surface oil burning subsequent to the Deepwater Horizon oil rig explosion in April 2010. Approximately 4% of the combusted material was released into the atmosphere as BC. The total amount of BC introduced to the atmosphere of the Gulf of Mexico via surface burning of oil during the 9-week spill is estimated to be (1.35 ± 0.72) × 106 kg. The median mass diameter of BC particles observed in the burning plume was much larger than that of the non-plume Gulf background air and previously sampled from a variety of sources. The plume BC particles were internally mixed with very little non-refractory material, a feature typical of fresh emissions from fairly efficient fossil-fuel burning sources and atypical of BC in biomass burning plumes. BC dominated the total accumulation-mode aerosol in both mass and number. The BC mass-specific extinction cross-section was 10.2 ± 4.1 and 7.1 ± 2.8 m2/g at 405 and 532 nm respectively. These results help constrain the properties of BC emissions associated with DWH and other large spills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.