Abstract
Interfacial wave parameters, in this case the frequency, height, velocity, and slope, were investigated experimentally in a horizontal air-water stratified flow. Experiments were conducted with a parallel wire conductance sensor and PIV visualization in a rectangular channel, of which the width and height are 40 mm and 50 mm, respectively. In the experiments, the flow condition covered the liquid Reynolds number Rel range of 450 to 3540 and the gas Reynolds number Reg range of 14,000 to 70,000. The results revealed that the observed wave types according to the flow conditions in the rectangular channel are similar to those in a horizontal pipe. The frequency, height, and slope of the interfacial wave show complicated tendencies according to the combination of Reg and Rel, which affects the coalescence and breakup of the wave. Specifically, the wave height and wave slope have opposite tendencies regarding the criterion of Reg = 34,000. For cases in which Reg ≥ 34,000, the interfacial drag force significantly affects the height and slope of the disturbance wave. In contrast, for Reg < 34,000, the growth of the wave has an important effect on the wave parameters. Finally, new empirical correlations for the frequency, height, and slope of the interfacial wave were proposed for application to the development of a droplet entrainment model in a horizontal stratified flow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.