Abstract

This study introduces an insect-mimicking flapping-wing system, where the rotation, corrugation, and clapping of insect wings have been mimicked. Unlike most motor-driven flapping systems, the flapping in this system is actuated by a unimorph piezoceramic actuator. The artificial wings are first made of a thin polyethylene sheet and then corrugated. As the wings are assembled through a pitching hinge, they can passively rotate about the hinge during the flapping motion due to the resultant aerodynamic force. The effects of the rotation, corrugation, and clapping of the wings are experimentally explored with respect to the vertical force produced by the flapping system. A smoke-wire flow visualization is also conducted to confirm whether the flapping-wing system can generate leading edge and trailing edge vortices, which are essential for generating lift and thrust in insect flight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.