Abstract
Modified peanut shell (MPS) was prepared by amination reaction with peanut shell (PS) as the starting material. The sorption of Cr(VI) oxyanions on MPS in static and column tests were investigated. In addition, the sorption isotherm and kinetic models were applied to confirm the sorption capacity and the sorption mechanisms. BET surface area analysis showed the physicochemical characteristics of the samples. The results of zeta potential, Fourier transform infrared (FT-IR) and Raman spectra analysis illustrated that chemical adsorption and ion exchange are the potential sorption mechanism. The static sorption test showed that the maximum sorption capacity (qmax) of MPS for Cr(VI) increased with temperature, which indicated that the Cr(VI) sorption process was endothermic. The saturated sorption capacity of Cr(VI) in the column sorption test was 138.34 mg·g−1, which accounted for 93.9% of the qmax at 25 °C. The regeneration capacity of MPS was evaluated using HCl solution as an eluent. The high regeneration efficiency (82.6%) validated the dominance of the ion exchange mechanism in the Cr(VI) sorption process with Cl− ions displacing Cr(VI) oxyanion on MPS. The Langmuir isotherm model showed a higher correlation coefficient than the other adsorption isotherm models. And in the kinetic study, a pseudo-second-order model fit the data best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.