Abstract
Air and water velocity fields have been simulated during natural convection, using a two-dimensional volume of fluid (VOF) model. The results have shown that during unstable thermal stratification, the root-mean-square (RMS) airside velocities are an order of magnitude higher than the RMS waterside velocities, whereas, during the stable thermal stratification, the velocity magnitudes are comparable for air and water sides. Furthermore, the magnitude of the air velocity changed more rapidly with the change in the bulk air–water temperature difference than the water velocity, indicating that the air velocities are more sensitive to the bulk air and water temperature difference than the water velocities. A physical model of the heat and mass transfer across the air–water interface is defined. According to this model, the vortices on the air and water sides play an important role in enhancing the heat and mass transfer. Due to the significance of the flow velocities in the transport process, it has been proposed that the correlations for the heat and mass transfer during natural convection should be improved by incorporating the flow velocity as a parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.