Abstract

This paper compares classic (continuous) fatigue tests and fatigue tests carried out with time intervals of no stress in rock salt using a multifunctional testing machine and acoustic emission equipment. The results show that time intervals of no stress have a strong impact on the fatigue activity of rock salt. In fatigue tests with intervals, the residual strain in circles following an interval (α circles) is generally larger than that in circles before the intervals (β circles). The insertion of a time interval with no stress in the fatigue process accelerates the accumulation of residual strain: the longer the interval, the faster the residual strain accumulates during the fatigue process and the shorter the fatigue life of the rock salt. α circles produce a greater number of acoustic emission counts than β circles, which demonstrates that residual stress leads to internal structural adjustment of rock salt on a mesoscopic scale. During intervals of no stress, acoustic emission activity becomes more active in α circles because of reverse softening caused by the Bauschinger effect, which accelerates the accumulation of plastic deformation. A qualitative relationship between the accumulated damage variable and the time interval is established. A threshold in the duration of the time interval exists (around 900 s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call