Abstract
The performance of the pulsed-current gas metal arc welding (GMAW) process for vertical-up weld deposition of steel has been found to be superior over the use of the short-circuiting arc GMAW process with respect to the tensile, impact, and fatigue properties of the weld joint. The microstructure, weld geometry, and mechanical properties of a pulsed-current weld joint are largely governed by the pulse parameters, and correlate well to the factor φ, defined as a summarized influence of pulse parameters such as peak current, base current, pulse-off time, and pulse frequency. The increase of φ has been found favorable to refine the microstructure and enhance the tensile strength, Cv toughness, and fatigue life of a weld joint. The fatigue life of a short-circuiting arc weld joint has been found to be markedly reduced due to the presence of an undercut at the weld toe and incomplete side-wall fusion of the base material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.