Abstract

This paper elaborates upon a previous investigation into the influence of external electric and magnetic fields on a flow through a supersonic diffuser. The aim of the present study is to correlate a change in the configuration of a shock wave emerging near the diffuser inlet at magnetohydrodynamic interaction with the amount of force and energy actions and with total pressure losses. For this purpose, the main parameters of the shock wave structure and the total pressure are measured at the diffuser outlet when the flow is subjected to magnetic and electric fields of various strengths at different routes of current passage. In the experiments, a shock tube with a supersonic nozzle is employed. The shock tube forms a flow behind the shock wave reflecting from the end of the tube, which terminates in the nozzle. The diffuser is located directly downstream of the nozzle. The investigation is carried out in xenon. The flow is subjected to external fields at the inlet of the diffuser. The shock wave structure is visualized by frame sweeping of Schlieren patterns of the flow. The total pressure is measured with a piezoelectric transducer located at the end of the channel. The results obtained make it possible to optimize the action on the flow in terms of power consumption and total pressure losses for a given design of the diffuser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.