Abstract

Geopolymer is known as an alkaline alumino-silicate material that has many potential advantages to replace for cement-based materials. Geopolymer is a green material with low or non-CO2 emission technology, high strength and heat resistance, high chemical resistance, and low energy production. Geopolymer has synthesized from activated alumino-silicate resources in high alkaline conditions. After formed, the geopolymer samples are cured in different conditions such as room temperature, drying oven temperature (from 40°C to 150°C), high pressure and temperature conditions of autoclave equipment. In this study, the paper would like to introduce a new technique for curing the specimens. The geopolymer samples were cured in a microwave oven set by various regimes of curing time. After cured in microwave conditions, the samples were tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). This technology is a useful solution because of saving time for curing the geopolymer specimens in comparison with others (normally, it takes time for curing in 28 days). Microstructural characteristics of the fly ash-based geopolymer were analyzed and evaluated using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.