Abstract
A fast transient voltage dependent outward current (TOC) in trigeminal motoneurons (TMNs) was studied in guinea pig brainstem slices by use of sharp electrodes in combination with single electrode voltage clamp techniques. In solutions containing TTX, low Ca 2+Mn 2+ and 20 mM TEA this current activated around −55 to −60 mV from holding potentials negative to resting potential, obtained its peak amplitude within 5 ms and decayed as a single exponential with a time constant of 6–8 ms. Half maximal values for inactivation and activation were −72 and −37 mV, respectively. Bath application of 5mM 4-AP suppressed this current by approximately 90% and eliminated the early depolarizing transient membrane rectification observed in response to a constant depolarizing current pulse, prolonged the action potential duration, and reduced the threshold voltage and delay to onset of the action potential. It is suggested that this current resembles the typical A-current observed in many CNS neurons and, as a result of its voltage and time dependent properties, could contribute to control of motoneuronal discharge and timing of burst onset during rhythmical jaw movements. Therefore, any cellular models of masticatory activity should include the properties of this current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.