Abstract

The characteristics of an endoglucanase produced by a Trichoderma virens strain T9 newly isolated from a palm-fruit husk dump site, its physiological characteristics and enzyme production were studied. Whole cells of the depolymerizing-enzyme producing T. virens were applied to palm-fruit husk and bird performance characteristics when employed as poultry diet additive were considered. Endoglucanase activity in submerged fermentation was 1.6 nkat. Optimum activity was recorded at pH 6.0 and 55°C. The enzyme retained 50% residual glucanase activity at 70°C for 10 minutes. 1.0% Tween-80 and SDS yielded endoglucanase activity 2.15 times higher than the control. Activity was boosted by 20mM Ca(2+) (115.0%); 10mM K(+) (106.5%); and was totally inhibited by 1mM Hg(2+). The addition of T. virens-fermented palm-fruit husk with other layer feed components on the bird characteristics showed that change in bird weight between the control and test birds were not significantly different (p>0.05) but differed in terms of daily feed ingested (p<0.05). The feed to weight-gain ratio was best with the unmodified palm-fruit husk based diet (8.59). There was no significant difference in the egg weights from modified palm-fruit husk based diet and control (p>0.05). The shell thickness (0.64mm) and yolk content (23.61%) were highest in the microbially-modified husk diet. The alternative to maize based diets proffered by the application of T. virens-modified palm-fruit husk in poultry nutrition in terms of bird weight and feed to weight-gain ratio affords the poultry farmer an economic advantage and allows for a greater utilization of the maize in human diets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.