Abstract

The hot ductility behavior of boron steel at high strain rates is of great importance because of its relationship with problematic brittleness observed during hot-forming processes. The proper hot-forming temperature must be established to manufacture high-quality products of complex geometries. In this investigation, the mechanical properties of 30MnB5 boron steel has been examined by hot tensile tests performed at temperatures ranging from 400 to 900°C, with 100°C increments, and at a strain rate of 0.083s−1. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and structural observations performed by SEM on longitudinal specimen sections. The results indicate the minimum ductility of the tested boron steel observed as a function of deformation temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.