Abstract

In recent decades, the growth of heat transfer using nanomaterials in the conventional base fluid has caught the attention of researchers around the world. The present research investigates the growth in heat transfer using ZnO-DW based nanofluids in a square heat exchanger. ZnO nanoparticles were synthesized by using the single-pot sonochemical technique. The ZnO-DW based nanofluids with different concentrations (0.1, 0.075, 0.05 and 0.025 mass%) were prepared by using probe sonication technique. The heat transfer growth will be benchmarked using the experimental data from distilled water experiment. Reynolds numbers, average convective heat transfer coefficient (h), and Nusselt number were calculated and analyzed in this investigation. Significant enhancement of 52% in thermal conductivity was noticed at 45 °C for 0.1 mass% concentration of ZnO-DW based nanofluids, which is due to the presence of maximum ZnO nanoparticles. Moreover, the maximum improvement in Nusselt values recorded at the end of the square pipe is 47% for 0.1 mass%, while 32%, 27% and 17% increase was recorded for 0.075, 0.05 and 0.025 mass% concentrations, and heat transfer enhancement was from 500 to 1100, 500 to 960, 500 to 910, and 500 to 900 W m−2 K−1 for different ZnO-DW based nanofluids mass% concentrations, which is more than water due to stability of nanoparticles. It can be concluded that the heat transfer performance enhancement is credited to the combination of square pipe and well-dispersed and stable ZnO-DW based nanofluids for heat exchanger applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.