Abstract
GaN epilayers were grown on lens-shaped-pattern sapphire substrate (PSS) (0 0 0 1) and unpatterned sapphire substrate (UPSS) (0 0 0 1) by metal-organic chemical vapor deposition (MOCVD). The quality of the grown GaN epilayers on the PSS and UPSS were compared. Structural characteristics, surface morphology and optical properties of the GaN epilayers were investigated using double crystal X-ray diffraction (DCXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence (PL). A lens-shaped pattern was formed on the sapphire substrate to reduce threading dislocation (TD) density and also to improve the optical emission efficiency by internal reflection on the lens. SEM images show the growth of GaN epilayers at various times. Full coalescence is observed at a growth time of 80 min. It is seen from the DCXRD rocking spectrum that full width at half maximum (FWHM) of the GaN grown on PSS was 438.7 arcsec which is less than UPSS value. The lower value of FWHM indicates that the crystalline quality of the GaN epilayers grown on PSS is improved compared to GaN grown on UPSS. It is clearly seen from the AFM images that the dislocation density is less for the GaN grown on PSS. A strong and sharp PL band edge emission was observed for the GaN grown on PSS compared to UPSS. Defect related yellow luminescence was observed for GaN grown on UPSS which did not appear for PSS. The FWHM at the 364.3 nm peak position was evaluated to be 50.7 meV from the PL spectra for GaN grown on PSS. The above result indicates GaN epilayers can be grown on PSS with low TD density and will be useful for optical emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.