Abstract

BackgroundAlmost nothing is known about the medical aspects of runners doing a transcontinental ultramarathon over several weeks. The results of differentiated measurements of changes in body composition during the Transeurope Footrace 2009 using a mobile whole body magnetic resonance (MR) imager are presented and the proposed influence of visceral and somatic adipose and lean tissue distribution on performance tested.Methods22 participants were randomly selected for the repeated MR measurements (intervals: 800 km) with a 1.5 Tesla MR scanner mounted on a mobile unit during the 64-stage 4,486 km ultramarathon. A standardized and validated MRI protocol was used: T1 weighted turbo spin echo sequence, echo time 12 ms, repetition time 490 ms, slice thickness 10 mm, slice distance 10 mm (breath holding examinations). For topographic tissue segmentation and mapping a modified fuzzy c-means algorithm was used. A semi-automatic post-processing of whole body MRI data sets allows reliable analysis of the following body tissue compartments: Total body volume (TV), total somatic (TSV) and total visceral volume (TVV), total adipose (TAT) and total lean tissue (TLT), somatic (SLT) and visceral lean tissue (VLT), somatic (SAT) and visceral adipose tissue (VAT) and somatic adipose soft tissue (SAST). Specific volume changes were tested on significance. Tests on difference and relationship regarding prerace and race performance and non-finishing were done using statistical software SPSS.ResultsTotal, somatic and visceral volumes showed a significant decrease throughout the race. Adipose tissue showed a significant decrease compared to the start at all measurement times for TAT, SAST and VAT. Lean adipose tissues decreased until the end of the race, but not significantly. The mean relative volume changes of the different tissue compartments at the last measurement compared to the start were: TV −9.5% (SE 1.5%), TSV −9.4% (SE 1.5%), TVV −10.0% (SE 1.4%), TAT −41.3% (SE 2.3%), SAST −48.7% (SE 2.8%), VAT −64.5% (SE 4.6%), intraabdominal adipose tissue (IAAT) −67.3% (SE 4.3%), mediastinal adopose tissue (MAT) −41.5% (SE 7.1%), TLT −1.2% (SE 1.0%), SLT −1.4% (SE 1.1%). Before the start and during the early phase of the Transeurope Footrace 2009, the non-finisher group had a significantly higher percentage volume of TVV, TAT, SAST and VAT compared to the finisher group. VAT correlates significantly with prerace training volume and intensity one year before the race and with 50 km- and 24 hour-race records. Neither prerace body composition nor specific tissue compartment volume changes showed a significant relationship to performance in the last two thirds of the Transeurope Footrace 2009.ConclusionsWith this mobile MRI field study the complex changes in body composition during a multistage ultramarathon could be demonstrated in detail in a new and differentiated way. Participants lost more than half of their adipose tissue. Even lean tissue volume (mainly skeletal muscle tissue) decreased due to the unpreventable chronic negative energy balance during the race. VAT has the fastest and highest decrease compared to SAST and lean tissue compartments during the race. It seems to be the most sensitive morphometric parameter regarding the risk of non-finishing a transcontinental footrace and shows a direct relationship to prerace-performance. However, body volume or body mass and, therefore, fat volume has no correlation with total race performances of ultra-athletes finishing a 4,500 km multistage race.

Highlights

  • Almost nothing is known about the medical aspects of runners doing a transcontinental ultramarathon over several weeks

  • The mean relative volume changes of the different tissue compartments at the last measurement compared to the start were: Total body volume (TV) −9.5% (SE 1.5%), total somatic volume (TSV) −9.4% (SE 1.5%), total visceral volume (TVV) −10.0% (SE 1.4%), total adipose tissue (TAT) −41.3% (SE 2.3%), somatic adipose soft tissue (SAST) −48.7% (SE 2.8%), visceral adipose tissue (VAT) −64.5% (SE 4.6%), intraabdominal adipose tissue (IAAT) −67.3% (SE 4.3%), mediastinal adopose tissue (MAT) −41.5% (SE 7.1%), total lean tissue (TLT) −1.2% (SE 1.0%), Somatic lean tissue (SLT) −1.4% (SE 1.1%)

  • Neither prerace body composition nor specific tissue compartment volume changes showed a significant relationship to performance in the last two thirds of the Transeurope Footrace 2009. With this mobile magnetic resonance imaging (MRI) field study the complex changes in body composition during a multistage ultramarathon could be demonstrated in detail in a new and differentiated way

Read more

Summary

Introduction

Almost nothing is known about the medical aspects of runners doing a transcontinental ultramarathon over several weeks. As in every field of human physical activities, some people try to push themselves to the limits and beyond. For these ultra-athletes a multistage ultramarathon (MSUM) is the ultimate test of endurance performance. The worldwide small group of ultra-endurance runners meet with each other trying to achieve the impossible: finishing a multistage transcontinental footrace over thousands of kilometers. These most extreme multistage endurance competitions in the world take the runner to a different level, where nutrition, sleep, energy and psychological states have to be carefully managed. Prolonged ultra-endurance footraces offer the best opportunity to study physical adaptations and the relationships of the physiological parameters in endurance athletes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.