Abstract
This study aimed to identify patient and appointment characteristics associated with no-shows to new patient appointments at a US academic ophthalmology department. Cross-sectional study. This was a study of all adult patients with new patient appointments scheduled with an attending ophthalmologist at Penn State Eye Center between January 1st and December 31st of 2019. A multiple logistic regression model was used to assess the association between characteristics and no-show status. Of 4,628 patients, 759 (16.4%) were no-shows. From the multiple logistic regression model, characteristics associated with no-shows were age (Odds Ratio (OR) for 18-40 years vs. >60 years: 3.41, 95% Confidence Interval (CI) 2.57, 4.51, p <0.001 and OR for 41-60 years vs. >60 years: 2.14, 95% CI 1.67, 2.74, p<0.001), median household income (OR for <$35,667 vs. >$59,445: 1.59, 95% CI 1.08, 2.34, p<0.001), insurance (OR for None vs. Medicare: 6.92, 95% CI 4.41, 10.86, p<0.001 and OR for Medicaid vs. Medicare: 1.54, 95% CI 1.18, 2.01, p=0.002), race (OR for Black vs. White: 2.62, 95% CI 2.00, 3.43, p<0.001 and OR for Other vs. White: 2.02, 95% CI 1.58, 2.59, p<0.001), and commute distance (OR for 5-10 mi vs. ≤5 mi: 1.73, 95% CI 1.17, 2.55, p=0.006). Appointments with longer lead times and scheduled with glaucoma or retina specialists were also significantly associated with greater no-shows. Certain patient and appointment characteristics were associated with no-show status. These findings may assist in the development of targeted interventions at the patient, practice, and health system levels to improve appointment attendance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.