Abstract

In recent years, the coastal area in East China has experienced elevated volatile organic compounds (VOCs) levels during specific periods. VOCs have become one of the major atmospheric pollutants in these areas. In this study, 64 compounds including alkanes, alkenes, halohydrocarbons, aromatics, and oxygenated VOCs (OVOCs) were obtained by the TO-15 method through a 12-month campaign in industrial, urban and suburban areas in the Yangtze River Delta of China. The overall trends of total VOC (TVOC) concentrations at eight sampling sites were as follows: winter > autumn > spring > summer. The proportion of VOC categories was various at industrial sites, while OVOCs and halohydrocarbons had high proportions at urban sites and suburban sites, respectively. Coating, vehicle emission, petrochemical source, industrial source, and gasoline volatilization were identified as the major VOC emission sources by the positive matrix factorization model. Petrochemical and coating sources were the prime VOC sources at industrial sites. Aromatics contributed the most ozone formation potential at industrial sites, while OVOCs provided the main contributions at both urban and suburban sites during four seasons. According to the health risk assessment, a high probability of non-carcinogenic risk existed at three industrial sites. Special attention should be given to certain VOCs, such as acrolein and 1,2-dibromoethane in industrial areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.