Abstract

To explore the emission characteristics of volatile organic compounds (VOCs) from vehicular exhaust sources and evaporative sources with ethanol gasoline (E10) as the main fuel, VOCs sampling campaigns were carried out in the north third ring tunnel of Zhengzhou city for two consecutive weeks in December 2019. In addition, the characteristics of traffic flow and environmental information were also monitored in the tunnel. Firstly, 106 VOCs were quantified using gas chromatography/mass spectrometry (GC/MS), and then source apportionment of VOCs in the tunnel was carried out using a positive matrix factorization (PMF5.0)-chemical mass balance (CMB8.2) composite model. Finally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of vehicle exhaust sources and evaporative sources were analyzed using the maximum incremental reactivity (MIR) and fractional aerosol coefficient (FAC). The results showed that ρ(VOCs) in the tunnel was (2794.5±147.4) μg·m-3 during the experiment, among which halogenated hydrocarbons[(32.4±2.0)%] accounted for the highest proportion, followed by aromatic hydrocarbons[(27.5±0.6)%] and alkanes[(23.3±0.8)%]. Source apportionment of vehicular VOCs showed that exhaust emissions (62.5%)>evaporative emissions (37.5%), whereas the contribution of OFP was that exhaust emissions (71.9%)>evaporative emissions (28.1%), and the contribution of SOAFP was that exhaust emissions (75.8%)>evaporative emissions (24.2%). The dominant components of OFP in evaporative sources were m,p-diethylbenzene, isoprene, and trans-2-pentene, whereas m,p-diethylbenzene, m,p-xylene, and 1,2,3-trimethylbenzene were the dominant components of SOAFP. The major components of OFP in exhaust sources were m,p-xylene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene, whereas m,p-xylene, m,p-diethylbenzene, and 1,3,5-trimethylbenzene were the dominant components of SOAFP. In regions where ethanol gasoline is used, special attention should be paid not only to the exhaust emissions control but also to strengthening the emissions reduction of VOCs from vehicle evaporative sources, especially the high active components such as aromatic hydrocarbons and alkenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call