Abstract

More accurate source analysis of potentially toxic elements (PTEs) in atmospheric fallout that endanger biodiversity and human health remains needed. This study determined the concentrations of seven PTEs, including Pb, Cd, As, Cu, Zn, Ni, and Cr, by inductively coupled plasma mass spectrometry (ICP-MS), and the sources of PTE pollution were quantified using multivariate statistical analysis, including principal component analysis (PCA), cluster analysis (CA), and Pearson correlation analysis, and Moran index was applied for mutual verification and supplementation. PCA and CA revealed that the same mixed sources of Pb, Cd, As, Cu, and Zn were found in the atmospheric dust fall in the study area, while Ni and Cr had the same source of pollution. Pearson correlation analysis provided that there were strong correlations between Pb-Cd, Pb-As, Pb-Cu, Cd-As, Cd-Cu, As-Cu, and Ni-Cr, indicating commonality between the two sources of heavy metal pollution. Additionally, the Moran index showed that strong spatial correlations were observed between Pb, Cd, As, Cu, and Zn, whose sources were mainly related to non-ferrous metal processing smelter smelting slag sites and an environmental company in the study area. However, no spatial correlation was found between Ni and Cr, which mainly originated from the local geological background.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call