Abstract

Phosphoglycolate phosphatase (PGPase), a key enzyme of photorespiration in photosynthetic organisms, was purified from Chlamydomonas reinhardtii. The enzyme was an approximately 65-kDa homodimer with a pI value of 5.1 composed of approximately 32-kDa subunits not connected by any S-S bridges. It was also highly specific for phosphoglycolate with a K(m) value of 140 microm and an optimal pH between 8 and 9. The activity was strongly inhibited by CaCl(2), and it recovered competitively following the addition of MgCl(2) or EGTA. A mobility shift was observed in SDS-polyacrylamide gel electrophoresis by the addition of CaCl(2), indicating that the enzyme binds to Ca(2+). The N-terminal region of amino acid sequence deduced from cDNA sequence that was not contained in the purified PGPase had similar characteristics to those of typical stroma-targeting transit peptides in C. reinhardtii. The following region of the deduced sequence containing 302 amino acid residues was similar to p-nitrophenylphosphatase-like proteins, although the purified PGPase did not hydrolyze p-nitrophenylphosphate. Genomic DNA fragments from wild type containing the sequence homologous to the cDNA for PGPase complemented the PGPase-deficient mutant pgp1. Possible regulatory mechanisms during adaptation to limiting CO(2) were discussed based on the characteristics of the purified PGPase and the deduced amino acid sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.