Abstract

This study was conducted to provide a vibrational culture model to investigate the effects of mechanical environments on cellular functions, and elucidate physiological characteristics of two different types of cells in vocal folds under static and vibrational conditions. In vitro study of human vocal fold fibroblasts (hVFFs) and human macula flava stellate cells (hMF-SCs). hVFFs and hMF-SCs were exposed to a 2-second-on/2-second-off, 205 Hz vibration regime for 4 hours by using a vibrational culture model. We compared cell morphology, cell viability, and gene expression in extracellular matrix-related components, growth factors, and differentiation markers under static and vibratory conditions. hVFFs and hMF-SCs differed in their morphologies and gene expression levels under static condition. The applied vibration did not induce changes in morphology and viability of either cell type. However, gene expression levels changed in both cell types in response to vibration; in particular, hMF-SCs exhibited a more sensitive response to vibration than that shown by hVFFs. The vibrational culture model developed in this study enabled us to investigate the effects of the applied vibration on two types of vocal fold resident cells. As a result, we could demonstrate that hVFFs and hMF-SCs exhibited distinctively different characteristics under vibrational conditions. NA. Laryngoscope, 128:E258-E264, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.