Abstract
The micro-nanoparticles found in geothermal fluids exhibit distinct characteristics that hold great potential for detecting deeply concealed geothermal resources. Utilizing a nanoparticle tracking analyzer (NTA), we conducted observations on karst geothermal fluids collected from the central region of Shandong Province, specifically Jinan and Zibo. Our investigation revealed the presence of a significant quantity of naturally occurring micro-nanoparticles within these geothermal fluids, with particle sizes typically falling in the range of 100 nm to 5 μm. To gain a comprehensive understanding of these micro-nanoparticles, we subjected them to a detailed analysis, encompassing their type, shape, crystal structure, and chemical composition. This in-depth examination was carried out using transmission electron microscopy (TEM). Our findings, supported by TEM images and energy dispersive spectroscopy, indicated that these micro-nanoparticles in the geothermal fluid samples predominantly exhibit amorphous characteristics and possess irregular or nearly spherical shapes, often accompanied by rough edges. Furthermore, it was evident that the composition of these micro-nanoparticles primarily consists of carbonates, sulfates, and chlorides, which contain elements such as Fe, Ca, and Na. The distinctive features of these micro-nanoparticles provide valuable insights into the properties of the high-temperature reservoirs and aquifers from which they originate. As a result, we firmly assert that natural micro-nanoparticles can significantly contribute to the detection and comprehensive study of concealed geothermal resources within the Earth. This novel approach offers a promising method for exploring and gaining a deeper understanding of these hidden geothermal resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.