Abstract

To investigate the characteristics of quick contrast sensitivity function (qCSF) and its related parameters in Chinese ametropia children. This case series study enrolled 106 eyes of 53 children (male/female=29/24, age: 9.04±2.06 years). Examinations included manifest refraction, axial length, corneal curvature, and monocular and binocular qCSF readings without refractive correction (area under log CSF [AULCSF], CSF acuity, and contrast sensitivity [CS] at 1.0 to 18.0 cpd). The subjects were divided into groups according to age and refractive parameters for analysis. The mean spherical equivalent (SE), AULCSF, and CSF acuity of the test eyes were -0.94±1.53 D, 0.44±0.33, and 8.50±5.97 cpd, respectively. In the monocular qCSF comparison, the refraction sphere (RS) was the major factor correlated with qCSF readings (B=0.186, P =0.009 for AULCSF; B=0.543, P =0.019 for CSF acuity; generalized linear model). The three groups stratified by RS/SE (<-1.00D, -1.00D to 0D, and >0D) showed significant differences in CS at medium spatial frequencies (3.0 and 6.0 cpd; all P <0.05). In the low RS/SE group (within -1 to 0 D), the CS at 12.0 cpd was significantly lower than that in the hyperopia group (all P <0.05). Binocular qCSF readings were significantly correlated with those of the eyes with lower RS (all P <0.05). RS and SE are the major contributing factors of qCSF without refractive correction in children. The CS at medium spatial frequencies decrease significantly as the RS/SE increase. In low myopia children, the CS at medium and high spatial frequencies are significantly decreased, providing practical value in visual function screening in children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call