Abstract
This study aims to investigate the characteristics, provenance, and particle-related pollution of an intense dustfall event that occurred in Beijing on 16–17 April 2006. Satellite images reveal that the aeolian dust originated in northeastern Alxa League of Inner Mongolia and passed southeastward across northern Ningxia, middle Inner Mongolia, northern Shaanxi, Shanxi, and Hebei provinces. The dust then moved out of continental China in the vicinity of Beijing and Tianjin. The floating dust led to severe air pollution in Huhhot, Datong, and Beijing. We measured dustfall by collecting dust samples, investigated particle morphology, and calculated the mass medium diameter (MMD) of the dustfall using a scanning electron microscope (SEM). Major elements and mineral content of the dust particles were determined by electron probe and powder X-ray diffractometer, respectively. The relative abundance of dustfall during this event was 12.5–15.0 g m −2, making up about 10% of the total annual dustfall in Beijing. Dustfall amounted to 205 thousand tons in Beijing, the largest amount observed in recent years. The dust particles were mostly angular, subangular and subrounded in morphology, and the MMD was nearly 12 μm. Particles <10 μm accounted for 54.7% by number, but fine sand particles (larger than 50 μm) made up 53.7% by volume. Particles with diameters larger than 20 μm made up of the predominant volume of the samples (90.35%). Hence, this dustfall event was characterized by a high content of fine sand and coarse silt particles. The principal elements in the dust particles were C, O, Si, Al, Fe, and Ca, whereas the major minerals were quartz, Na-feldspar, calcite, and clay minerals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.