Abstract

Tuned-mass damper (TMD), or dynamic vibration absorber (DVA), is a very practical and effective device for vibration suppression. Various types of tuned-mass dampers have been proposed in literature, including the classic TMD, (parallel) multiple TMDs, multi-degree-of-freedom (DOF) TMD, and three-element TMD. In this paper we study the characteristics and optimization of a new type of TMD system, in which multiple absorbers are connected to the primary system in series. Structured H2 and H∞ control methods are adopted to optimize the parameters of spring stiffness and damping coefficients for random and harmonic vibration. It is found that series multiple TMDs are more effective and robust than all the other types of TMDs of the same mass ratio. The series two TMDs of total mass ratio 5% can appear to have 31%–66% more mass than the classical TMD, and it can perform better than parallel ten TMDs of the same total mass ratio. The series TMDs are also less sensitive to the parameter changes of the primary system than other TMD(s). Unlike the parallel multiple TMDs, the optimal mass distribution among absorbers in series TMDs is far from the case of equal masses, but instead the first absorber mass is much larger than the second one. Similar to the two-DOF TMD, the optimal series two TMDs also have zero damping in one of its two connections and further increased effectiveness can be obtained if negative dashpot is allowed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call