Abstract

Crayfish myofibril protein (CMP) gel deterioration induced by autoclaving was investigated. A series of CMP gels were obtained through treating CMP solutions at different autoclaving conditions from 100 °C/0.1 MPa to 121 °C/0.21 MPa, and then characteristics and the mechanism of gel texture deterioration along with the intensification of autoclaving were explored through determining appearance, texture, protein composition, cross-linking forces, degree of hydrolysis, water state, microstructure of the gels, and average particle size of aggregates. When autoclaving was at above 105 °C/0.103 MPa, texture of CMP gel showed a tendency to severely weaken with the intensification of autoclaving (p < 0.05), hydrophobic interaction and aggregation between proteins weakened gradually (p < 0.05), and moderately bound water in the gel decreased and T22 relaxation time significantly increased (p < 0.05). After heating for 30 min at above 105 °C/0.103 MPa, pores in the microstructure of CMP gel enlarged obviously, and myosin heavy chain (MHC) degraded. It can be concluded that CMP gel deterioration induced by autoclaving was associated with the degradation of MHC and 105 °C might be the critical temperature to ensure good texture of crayfish products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.