Abstract

To protect the environment and reduce the occurrence of coal mine fire, foam injection in goafs is an effective measure for preventing and extinguishing mine fires. The flow characteristics of foams injected into goafs have a significant impact on the prevention and extinguishment of such fires. To study the flow characteristics of foam injected into a goaf, we first independently constructed a set of experimental platforms for the visualization of goafs. Next, we performed physical experiments on foam injection using similarity theory. Flow characteristics were simulated under different foam concentrations, flow rates, and goaf porosities. The exponential function was found to provide a good fit to the trajectory of the foam's stacking edge in the goaf. According to the foam injection volume, the trend of the fitting equation parameter a could be divided into two stages. The first stage was the rapidly decreasing stage, and the second stage was the stable stage. It was inferred that the stacking height and diffusion radius of the foam under different conditions were related to the speed of liquid film drainage. The results of this study can provide a valuable reference for the use of fire prevention and extinguishment technology in the goaf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call