Abstract

ABSTRACTAn advanced, heat-resistant fluoroether rubber (FM-20) was subjected to dynamic thermogravimetric analysis (TGA) in the air atmosphere. The results suggested that its thermal degradation process can be divided into two parts. As the heating rate increased, the initial decomposition temperature and degradation temperature would move to higher ranges. The apparent activation energy of thermal decomposition, calculated by the Kissinger, Friedman and Flynn-Wall-Ozawa methods were 209, 240, and 211kJ/mol, respectively. Furthermore, the probable thermal degradation mechanism was also analyzed by the Coats-Redfern method. As a result, the most reasonable thermal degradation mechanism of FM-20 was g (α) = α3/2

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call