Abstract
Peat smoldering is one of the main combustion modes of forest ground fires. Research into the pyrolysis kinetics of peat is an essential step in studying the peat smoldering mechanism and ground fire behavior. We measured the elemental composition of one typical peat sampled from the northeast forest zone of China by means of spectrofluorometry and studied the pyrolysis characteristics of peat with thermogravimetry-differential thermal analysis (TG-DTA). Results show that the peat sample is composed of more than 45 elements. The pyrolysis process of peat may be divided into three stages, i.e., dehydration, organic matter pyrolysis and mineral decomposition. Because organic matter pyrolysis played an important role in peat smoldering, the pyrolysis kinetics of organic matter was determined. Using thermal kinetic analysis theory and optimization methods, the model that three-component react parallelly was established to describe the scheme of peat pyrolysis. We found that the scheme containing three-parallel-reactions could describe the pyrolysis kinetics very well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.