Abstract

Abstract. Coastal and submarine landslides are frequent at the western tip of the Gulf of Corinth, where small to medium failure events (106–107 m3) occur on average every 30–50 years. These landslides trigger tsunamis and consequently represent a significant hazard. We use here a dense grid of high-resolution seismic profiles to realize an inventory of the large mass transport deposits (MTDs) that result from these submarine landslides. Six large mass wasting events are identified, and their associated deposits locally represent 30 % of the sedimentation since 130 ka in the main western basin. In the case of a large MTD of ∼ 1 km3 volume, the simultaneous occurrence of different slope failures is inferred and suggests an earthquake triggering. However, the overall temporal distribution of MTDs would result from the time-dependent evolution of pre-conditioning factors rather than from the recurrence of external triggers. Two likely main pre-conditioning factors are (1) the reloading time of slopes, which varied with the sedimentation rate, and (2) dramatic changes in water depth and water circulation that occurred 10–12 ka ago during the last post-glacial transgression. Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources considering the observed volume of the MTDs.

Highlights

  • The study of marine geohazards through their imprint in the late Quaternary sedimentary record is of great significance, since it can provide further information on geohazard events recorded in historical records or even extend this record to much earlier times

  • Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources considering the observed volume of the mass transport deposits (MTDs)

  • Thirty-two MTDs have been imaged in the study area, from which 67 % are located in the large E–W-trending basin located below the flat deep basin (Mornos Canyon and Delphic Plateau, Fig. 2)

Read more

Summary

Introduction

The study of marine geohazards through their imprint in the late Quaternary sedimentary record is of great significance, since it can provide further information on geohazard events recorded in historical records or even extend this record to much earlier times. This paper focuses on the Gulf of Corinth, Greece, located in the most seismically active part of the Corinth rift. This area shows one of the largest seismic hazard in Europe (Woessner et al, 2013) and is affected by a tsunami once every 19 years on average, leading to a significant risk (Papadopoulos, 2003; Papathoma and Dominey-Howes, 2003). Small to medium failure events (106–107 m3) occur on average every 30–50 years

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call